

City of **Tustin** Water Services

Your 2015 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. **This year's report covers calendar year 2014 drinking water quality testing and reporting.**

The City of Tustin Water Services Division (City) vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources

Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards.

In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, the Orange County Water District (OCWD), which manages the groundwater basin, and the Metropolitan Water District of Southern California (MWDSC), which supplies imported treated surface water to the City, test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals.

Through drinking water quality testing programs carried out by OCWD for groundwater, MWDSC for treated surface water and the City for the distribution system, your drinking water is constantly monitored from source to tap for

regulated and unregulated constituents. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Some of our data, though representative, are more than one year old.

The Quality of Your Water is Our Primary Concern

Sources of Supply

Orange County's water supplies are a blend of groundwater provided by OCWD and water imported from Northern California and the Colorado River by the Municipal Water District of Orange County (MWDOC) via MWDSC. Groundwater comes from a natural underground aquifer that is replenished with water from the Santa Ana River, local rainfall and imported water. The groundwater basin is 350 square miles and lies beneath north and central Orange County from Irvine to the Los Angeles County border and from Yorba Linda to the Pacific Ocean. More than 20 cities and retail water districts draw from the basin to provide water to homes and businesses.

Orange County's Water Future

For years, Orange County has enjoyed an abundant, seemingly endless supply of high-quality water. However, as water demand continues to increase statewide, we must be even more conscientious about our water supply and maximize the efficient use of this precious natural resource.

OCWD and MWDOC work cooperatively to evaluate new and innovative water management and supply development programs, including water reuse and recycling, wetlands expansion, recharge facility construction, ocean and brackish water desalination, surface storage and water use efficiency programs. These efforts are helping to enhance long-term countywide water reliability and water quality.

A healthy water future for Orange County rests on finding and developing new water supplies, as well as protecting and improving the quality of the water that we have today. Your local and regional water agencies are committed to making the necessary investments today in new water management projects to ensure an abundant and high-quality water supply for our future.

Basic Information About Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production or mining activities.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring
 or result from urban storm runoff, industrial or domestic wastewater discharges, oil
 and gas production, mining and farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can

also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

In order to ensure that tap water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Immuno-Compromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are

undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water hotline at (800) 426-4791 between 10 a.m. and 4 p.m. Eastern Time (7 a.m. to 1 p.m. in California).

Conservation Tips for Inside Your Home

Collect water used to wash fruits and vegetables Use it to water your houseplants

Wash only full loads of laundry and dishes: Saves up to 50 gallons per week

Plug the sink instead of running water to rinse your razor **Saves up to 300 gallons a month**

Buy water-saving devices like high-efficiency toilets and clothes washers. You'll save gallons of water per day, and many of these items are eligible for rebates. To learn more, visit: **www.ocwatersmart.com**.

hers. igible

Talk to your family and friends about saving water. If everyone does a little, we all benefit a lot.

Questions about your water? Contact us for answers.

For information about this report, or your water quality in general, please contact Joe Lozano at (714) 573-3178.

The Tustin City Council meets the first and third Tuesdays of every month at 7:00 pm in the City Council Chambers, 300 Centennial Way, Tustin, California. Please feel free to participate in these meetings.

For more information about the health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791.

Important Information the EPA Would Like You to Know Issues in Water Quality that Could Affect Your Health

Drinking Water Fluoridation

Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water. In December 2007, MWDSC joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. In line with recommendations from the DDW, as well as the U.S. Centers for Disease Control and Prevention, MWDSC adjusted the natural fluoride level in imported treated water from the Colorado River and State Project water to the optimal range for dental health of 0.7 to 1.3 parts per million. Our local water is not supplemented with fluoride. Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million.

Additional information about the fluoridation of drinking water is available on these websites:

U.S. Centers for Disease Control and Prevention

1 (800) 232-4636 • www.cdc.gov/fluoridation/

State Water Resources Control Board, **Division of Drinking Water**

www.waterboards.ca.gov/drinking_water/ certlic/drinkingwater/Fluoridation.shtml

What are Water Quality Standards?

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards:

- · Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements
- Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter (µg/L)
- parts per trillion (ppt) or nanograms per liter (ng/L)

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

For more information about MWDSC's fluoridation program, please call Edgar G. Dymally at (213) 217-5709 or email him at edymally@mwdh2o.com.

Nitrate Advisory

At times, nitrate in your tap water may have exceeded one-half the MCL, but it was never greater than the MCL of 45 milligrams per liter (mg/L). Nitrate in your drinking water in 2014 ranged from non-detect to 33 mg/L. The following advisory is issued because in 2014 we recorded nitrate measurements in the drinking water supply which exceeded one-half the nitrate MCL.

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath

and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by

2014 City of Tustin Drinking Water Quality Local Groundwater and Metropolitan Water District Treated Surface Water

Chemical	MCL	PHG / (MCLG)	Avg. Groundwater Amount	Avg. Imported MWD Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant	
Radiologicals – Tested in 2014								
Alpha Radiation (pCi/L)	15	(0)	ND	ND	ND – 4	No	Erosion of Natural Deposits	
Beta Radiation (pCi/L)	50	(0)	NR	5	4-6	No	Decay of Man-made or Natural Deposits	
Uranium (pCi/L)	20	0.43	< 1	3	ND - 3	No	Erosion of Natural Deposits	
Inorganic Chemicals – Tested in 2014								
Aluminum (ppm)	1	0.6	ND	0.17	ND - 0.31	No	Treatment Process Residue, Natural Deposits	
Barium (ppm)	1	2	<0.10	0.11	ND - 0.11	No	Erosion of Natural Deposits	
Fluoride (ppm) treatment-related*	Control Range (Optimal Leve).7 – 1.3 pp I 0.8 ppm	m NR	0.8	0.7 – 1	No	Erosion of Natural Deposits	
Fluoride (ppm)	2	1	0.18	NR	0.15 - 0.23	No	Erosion of Natural Deposits	
Nitrate (ppm as NO ₃)	45	45	18	ND	ND – 33	No	Fertilizers, Septic Tanks	
Nitrate+Nitrite (ppm as N)	10	10	4	ND	ND -7.3	No	Fertilizers, Septic Tanks	
Secondary Standards* – Te	sted in 2014							
Aluminum (ppb)	200*	600	ND	170	ND - 310	No	Treatment Process Residue, Natural Deposits	
Chloride (ppm)	500*	n/a	100	90	63 - 160	No	Erosion of Natural Deposits	
Color (color units)	15*	n/a	ND	1	ND - 1	No	Erosion of Natural Deposits	
Odor (threshold odor number)	3*	n/a	ND	1	ND - 1	No	Naturally-occurring Organic Materials	
Specific Conductance (µmho/cm)	1,600*	n/a	960	980	710 - 1,400	No	Substances that Form Ions in Water	
Sulfate (ppm)	500*	n/a	140	230	86 - 240	No	Erosion of Natural Deposits	
Total Dissolved Solids (ppm)	1,000*	n/a	590	630	400 - 910	No	Erosion of Natural Deposits	
Turbidity (NTU)	5*	n/a	<0.1	ND	ND - 0.3	No	Erosion of Natural Deposits	
Unregulated Chemicals – Te	ested in 2013	and 2014	ł					
1,4-Dioxane (ppb)	NL = 1	n/a	0.1	ND	ND - 0.2	n/a	Industrial Waste Discharge	
Alkalinity, total (ppm as CaCO ₃)	Not Regulated	n/a	180	120	120 - 260	n/a	Erosion of Natural Deposits	
Boron (ppm)	NL = 1	n/a	<0.1	0.1	ND - 0.16	n/a	Erosion of Natural Deposits	
Calcium (ppm)	Not Regulated	n/a	95	72	50 - 150	n/a	Erosion of Natural Deposits	
Chlorate (ppb)	NL = 800	n/a	59	53	ND - 130	n/a	Byproduct of Drinking Water Chlorination; Industrial Processes	
Chromium, Hexavalent (ppb)**	10	0.02	0.23	0.07	ND - 0.4	n/a	Erosion of Natural Deposits; Industrial Discharge	
Chromium, Total (ppb)***	50	(100)	< 0.2	< 0.2	ND - 0.5	n/a	Erosion of Natural Deposits; Industrial Discharge	
Hardness, total (ppm as CaCO ₃)	Not Regulated	n/a	330	290	160 - 590	n/a	Erosion of Natural Deposits	
Magnesium (ppm)	Not Regulated	n/a	23	26	8.3 - 49	n/a	Erosion of Natural Deposits	
Molybdenum, Total (ppb)	Not Regulated	n/a	10	4.7	4.4 - 20	n/a	Erosion of Natural Deposits	
pH (pH units)	Not Regulated	n/a	7.9	8.1	7.7 – 8.1	n/a	Acidity, Hydrogen Ions	
Potassium (ppm)	Not Regulated	n/a	2.2	4.6	1.8 - 4.8	n/a	Erosion of Natural Deposits	
Sodium (ppm)	Not Regulated	n/a	68	94	51 – 99	n/a	Erosion of Natural Deposits	
Strontium, Total (ppb)	Not Regulated	n/a	640	930	420 - 1,100	n/a	Erosion of Natural Deposits	
Total Organic Carbon (ppm)	Not Regulated	TT	0.3	2.6	ND – 2.9	n/a	Runoff or Leaching from Natural Deposits	
Vanadium, Total (ppb)	NL = 50	n/a	4.4	2.8	1.5 – 7.7	n/a	Erosion of Natural Deposits	

ppb = parts-per-billion; ppm = parts-per-million; pCi/L = picoCuries per liter; NTU = nephelometric turbidity units; µmho/cm = micromhos per centimeter; NR = Not Required to be analyzed; ND = not detected; < = average is less than the detection limit for reporting purposes; n/a = not applicable; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level; TT = treatment technique

Contaminant is regulated by a secondary standard.

Hocavalent chromium is regulated with an MCL of 10 ppb but was not detected, based on the detection limit for purposes of reporting of 1 ppb. Hexavalent chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb. *Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb.

Iotal chromium was included as part of the unregulated chemicals requiring monitoring.								
Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Contaminant				
1) Highest single turbidity measurement	0.3 NTU	0.06	No	Soil run-off				
2) Percentage of samples less than 0.3 NTU	95%	100%	No	Soil run-off				

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms.

Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (T). A treatment technique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly.

flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at (800) 426-4791, or on the web at http://water.epa.gov/drink/info/lead/index.cfm.

Entrained Air

If your tap water has a slightly "milky" appearance, you're probably experiencing an interesting but harmless phenomenon known as "entrained air." The milky color in the water caused by tiny air bubbles is harmless and is related to the operation of City wells. The air is dissolved under pressure in the groundwater, much like carbon dioxide in a bottle of soda. If your tap water is milkycolored and you want to confirm you are experiencing entrained air, rinse out a clear glass twice and then fill it with cold tap water. After a few moments, the water should begin to clear from the bottom of the glass to the top as the bubbles rise to the surface. If the water does not clear, please contact us.

Want Additional Information?

There's a wealth of information on the internet about Drinking Water Quality and water issues in general. A good place to begin your own research is the City of Tustin website:

www.TustinCA.org.

In addition to extensive information about your local water and the support and services we offer, you'll find links for many other local, statewide, and national resources.

Conservation Tips for Outside Your Home

Check your sprinkler system for leaks, overspray and broken sprinkler heads and repair promptly **Saves up to 500 gallons per month** Install a smart sprinkler controller **Saves up to 40 gallons per day/over 13,000 gallons per year** Use a broom instead of a hose to clean drives and sidewalks **Saves up to 150 gallons each time** Water your plants in the early morning or evening **Saves up to 25 gallons each time** Remove the Turf from Your Yard

Saves about 42 gallons per square foot/per year

Rotating Nozzles for Pop-Up Sprays

Uses 20% less water than conventional sprinkler heads

Additional water saving steps and devices are also available, and some of these are eligible for substantial rebates. Consider replacing your lawn with drought tolerant plants, synthetic turf, or permeable hardscape. Or add rotating sprinkler nozzles, a

weather-based controller, or a drip line to enhance your automated irrigation system. And mulch. Hundreds of gallons a year can be saved by simply using organic mulch around plants to reduce evaporation.

For complete rebate information for these water saving resources, visit: **www.ocwatersmart.com**.

Source Water Assessments

Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

In 2012, MWDSC submitted to DDW its updated Watershed Sanitary Surveys for the Colorado River and State Water Project, which include suggestions for how to better protect these source waters. Both source waters are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires, and other watershed-related factors that could affect water quality.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water

2014 City of Tustin Distribution System Water Quality								
Disinfection Byproducts	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant			
Total Trihalomethanes (ppb)	80	39	ND – 44	No	Byproducts of Chlorine Disinfection			
Haloacetic Acids (ppb)	60	15	ND – 20	No	Byproducts of Chlorine Disinfection			
Chlorine Residual (ppm)	(4 / 4)	1.1	ND – 2.2	No	Disinfectant Added for Treatment			
Aesthetic Quality								
Turbidity (NTU)	5*	0.11	ND - 0.23	No	Erosion of Natural Deposits			
Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; twenty locations are tested monthly for color, odor and turbidity. Color and odor were not detected in 2014. MRDL = Maximum Residual Disinfectant Level, MRDLG = Maximum Residual Disinfectant Level Goal *Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).								

Bacterial Quality	MCL	MCLG	Highest Monthly Positive Samples	MCL Violation?	Typical Source of Contaminant
Total Coliform Bacteria	5%	0	1%	No	Naturally present in the environment

No more than 5% of the monthly samples may be positive for total coliform bacteria. The occurrence of 2 consecutive total coliform positive samples, one of which contains fecal coliform/*E. coli*. constitutes an acute MCI violation

Lead and Copper Action Levels at Residential Taps								
	Action Level (AL)	Health Goal	90 th Percentile Value	Sites Exceeding AL / Number of Sites	AL Violation?	Typical Source of Contaminant		
ead (ppb)	15	0.2	7	1 / 38	No	Corrosion of Household Plumbing		
Copper (ppm)	1.3	0.3	0.38	0 / 38	No	Corrosion of Household Plumbing		
very three years, 38 residences are tested for lead and copper at-the-tap. The most recent set of samples were collected in 2012.								

Lead was detected in nine homes; one exceeded the regulatory action Level. Copper was detected in 30 homes; none exceeded the regulatory action level. A regulatory action level is the concentration of a contaminant which triggers treatment or other reguirements that a water system must follow.

Unregulated Chemicals Requiring Monitoring in the Distribution System

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Chlorate (ppb)	800	n/a	49	37 – 57	2013
Chromium, Hexavalent (ppb)**	MCL = 10	0.02	0.085	ND - 0.15	2013
Molybdenum, Total (ppb)	n/a	n/a	4.9	4.6 - 5.4	2013
Strontium, Total (ppb)	n/a	n/a	970	920 - 1,100	2013
Vanadium, Total (ppb)	50	n/a	2.9	2.4 - 3.1	2013

**Hexavalent chromium is regulated with an MCL of 10 ppb but was not detected, based on the detection limit for purposes of reporting of 1 ppb. Hexavalent chromium was included as part of the unregulated chemicals requiring monitoring.

Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (213) 217-6850.

Groundwater Assessment

An assessment of the drinking water sources for the City was completed in December 2002. The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: confirmed leaking underground storage tanks, dry cleaners, and gas stations. The groundwater sources are considered most vulnerable to the following activities associated with contaminants detected in the water supply: known contaminant plumes, historic agricultural activities and application of fertilizers, and sewer collection systems.

A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, 605 W. Santa Ana Blvd., Building 28, Room 325, Santa Ana, CA 92701.

You may request a summary of the assessment by contacting the City of Tustin Water Services at (714) 573-3178.

The Need to Conserve has Never Been Greater

As California enters its fourth year of drought, water conservation has become vitally important for us all. There are many areas within our homes where we can save water, particularly outdoors, where our gardens and lawns receive almost 60% of all the water

we use. To learn more about the drought, or to find useful tips for how to conserve water, visit:

www.SaveOurWater.com or www.BeWaterWise.com

To learn about programs and devices that can help save water, along with information on rebates for these water saving resources, visit:

www.OCWaterSmart.com

BUILDING OUR FUTURE HONORING OUR PAST

City of Tustin Water Services

300 Centennial Way Tustin, California 92780 PRESORT STD U.S. Postage **P A I D** Santa Ana, CA Permit No. 1208

This report contains important information about your drinking water.

Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Customer Service Representative. Telefono: (714) 573-3382. Bản báo cáo có ghi những chi tiết quan trọng về phẩm chất nước trong cộng dồng quý vị. Hãy nhờ người thông dịch, hoặc hỏi một người bạn biết rõ về vấn dễ này.

يحتوي هذا التقرير على معلومات هـامـة عـن نـوعـيـة مـاء الشرب في منطقتك. يرجى ترجمته، أو ابحث التقرير مع صديق لك يفهم هذه المطومات جيداً.

这份报告中有些重要的信息, 讲到关于您所在社区的水的品 质。请您找人翻译一下,或者 请能看得懂这份报告的朋友给 您解释一下。

이 보고서에는 귀하가 거주하는 지역의 수질에 관한 중요한 정보 가 들어 있습니다. 이것을 변역 하거나 충분히 이해하시는 친구 와 상의하십시오.

この資料には、あなたの飲料水 についての大切な情報が書かれ ています。内容をよく理解する ために、日本語に翻訳して読む か説明を受けてください。